характеристики срабатывания автоматов

Автоматика в системах электроснабжения.
Записки инженера

В начало
18 July 2018

Характеристики срабатывания автоматических выключателей

Чувствительность электромагнитных расцепителей регламентируется параметром, называемым характеристикой срабатывания. Это важный параметр, и на нем стоит немного задержаться. Характеристика, иногда ее называют группой, обозначается одной латинской буквой, на корпусе автомата ее пишут прямо перед его номиналом, например надпись C16 означает, что номинальный ток автомата 16А, характеристика С (наиболее, кстати, распространенная). Менее популярны автоматы с характеристиками B и D, в основном на этих трех группах и строится токовая защита бытовых сетей. Но есть автоматы и с другими характеристиками.

Согласно википедии, автоматические выключатели делятся на следующие типы (классы) по току мгновенного расцепления:

  • тип B: свыше 3·In до 5·In включительно (где In — номинальный ток)
  • тип C: свыше 5·In до 10·In включительно
  • тип D: свыше 10·In до 20·In включительно
  • тип L: свыше 8·In
  • тип Z: свыше 4·In
  • тип K: свыше 12·In

При этом википедия ссылается на ГОСТ Р 50345-2010. Я специально перечитал весь этот стандарт, но ни о каких типах L, Z, K в нем ни разу не упоминается. В другом месте ссылались на уже не действующий ГОСТ Р 50030.2-94 - но я и в нем упоминания о них не нашел. Да и в продаже я что-то не наблюдаю таких автоматов. У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2·In до 3·In). У отдельных производителей существуют дополнительные кривые отключения. Например, у АВВ имеются автоматические выключатели с кривыми K (8 — 14·In) и Z (2 — 4·In), соответствующие стандарту МЭК 60947-2. В общем, будем иметь в виду, что, кроме B, C и D существуют и иные кривые, но в данной статье будем рассматривать только эти. Сами по себе кривые отключения одинаковы - они вообще показывают зависимость времени срабатывания теплового расцепителя от тока. Разница лишь в том, до какой отметки доходит кривая, после чего она резко обрывается до значения, близкого к нулю. Посмотрите на следующую картинку, обратите внимание на разброс параметров тепловой защиты автоматических выключателей. Видите два числа сверху графика? Это очень важные числа. 1.13 - это та кратность, ниже которой никакой исправный автомат никогда не сработает. 1.45 - это та кратность, при которой любой исправный автомат гарантированно сработает. Что они означают на деле? Рассмотрим на примере. Возьмем автомат на 10А. Если мы пропустим через него ток 11.3А или меньше, он не отключится никогда. Если мы увеличим ток до 12, 13 или 14 А - наш автомат может через какое-то время отключиться, а может и не отключиться вовсе. И только когда ток превысит значение 14.5А, мы можем гарантировать, что автомат отключится. Насколько быстро - зависит от конкретного экземпляра. Например, при токе 15А время срабатывания может составлять от 40 секунд до 5 минут. Поэтому, когда кто-то жалуется, что у него 16-амперный автомат не срабатывает на 20 амперах, он это делает напрасно - автомат совершенно не обязан срабатывать при такой кратности. Более того - эти графики и цифры нормированы для температуры окружающей среды, равной 30°C, при более низкой температуре график смещается вправо, при более высокой - влево.

разброс характеристик автоматов

Для характеристик k, l, z кривые несколько другие: кратность гарантированного несрабатывания 1.05, а срабатывания 1.3. Извините, более красивого графика не нашел:

Что нам следует иметь в виду, выбирая характеристику отключения? Здесь на первый план выходят пусковые токи того оборудования, которое мы собираемся включать через данный автомат. Нам важно, чтобы пусковой ток в сумме с другими токами в этой цепи не оказался выше тока срабатывания электромагнитного расцепителя (тока отсечки). Проще тогда, когда мы точно знаем, что будет подключаться к нашему автомату, но когда автомат защищает группу розеток, тогда мы только можем предполагать, что и когда туда будет включено. Конечно, мы можем взять с запасом - поставить автоматы группы D. Но далеко не факт, что ток короткого замыкания в нашей цепи где-нибудь на дальней розетке будет достаточен для срабатывания отсечки. Конечно, через десяток секунд тепловой расцепитель нагреется и отключит цепь, но для проводки это окажется серьезным испытанием, да и возгорание в месте замыкания может произойти. Поэтому нужно искать компромисс. Как показала практика, для защиты розеток в жилых помещениях, офисах - там, где не предполагается использование мощного электроинструмента, промышленного оборудования, - лучше всего устанавливать автоматы группы B. Для кухни и хозблока, для гаражей и мастерских обычно ставятся автоматы с характеристикой C - там, где есть достаточно мощные трансформаторы, электродвигатели, там есть и пусковые токи. Автоматы группы D следует ставить там, где есть оборудование с тяжелыми условиями пуска - транспортеры, лифты, подъемники, станки и т.д.

Существует разница в токе срабатывания электромагнитного расцепителя (отсечки) в зависимости от того, переменный или постоянный ток проходит через автомат. Если мы знаем значение переменного тока, при котором срабатывает отсечка, то при постоянном токе срабатывание произойдет при значении, равном амплитудному значению переменного тока. То есть ток нужно умножить примерно на 1.4. Часто приводят вот такие графики (по-моему, не очень верные, но подтверждающие то, что разница между пременным и постоянным током есть):

Все написанное выше относится к модульным автоматическим выключателям. У автоматов других типов характеристики несколько другие. Например, кривые срабатывания для автоматов АП-50.

Усенко К.А., инженер-электрик,

admin@electric-forum.ru

Адрес страницы:
Ссылка для сайта:
Ссылка для форума:

Яндекс.Метрика